按提交时间
按主题分类
按作者
按机构
您选择的条件: Xuelei Chen
  • The FAST Core Array

    分类: 天文学 >> 天文仪器与技术 提交时间: 2024-04-16 合作期刊: 《天文技术与仪器(英文)》

    摘要:The Five-hundred-meter Aperture Spherical Radio Telescope (FAST) Core Array is a proposed extension of FAST, integrating 24 secondary 40-m antennas implanted within 5 km of the FAST site. This original array design will combine the unprecedented sensitivity of FAST with a high angular resolution (4.3" at a frequency of 1.4 GHz), thereby exceeding the capabilities at similar frequencies of next-generation arrays such as the Square Kilometre Array Phase 1 or the next-generation Very Large Array. This article presents the technical specifications of the FAST Core Array, evaluates its potential relatively to existing radio telescope arrays, and describes its expected scientific prospects. The proposed array will be equipped with technologically advanced backend devices, such as real-time signal processing systems. A phased array feed receiver will be mounted on FAST to improve the survey efficiency of the FAST Core Array, whose broad frequency coverage and large field of view( FOV) will be essential to study transient cosmic phenomena such as fast radio bursts and gravitational wave events, to conduct surveys and resolve structures in neutral hydrogen galaxies, to monitor or detect pulsars, and to investigate exoplanetary systems. Finally, the FAST Core Array can strengthen China's major role in the global radio astronomy community, owing to a wide range of potential scientific applications from cosmology to exoplanet science.

  • Foreground Removal of CO Intensity Mapping Using Deep Learning

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Line intensity mapping (LIM) is a promising probe to study star formation, the large-scale structure of the Universe, and the epoch of reionization (EoR). Since carbon monoxide (CO) is the second most abundant molecule in the Universe except for molecular hydrogen ${\rm H}_2$, it is suitable as a tracer for LIM surveys. However, just like other LIM surveys, CO intensity mapping also suffers strong foreground contamination that needs to be eliminated for extracting valuable astrophysical and cosmological information. In this work, we take $^{12}$CO($\it J$=1-0) emission line as an example to investigate whether deep learning method can effectively recover the signal by removing the foregrounds. The CO(1-0) intensity maps are generated by N-body simulations considering CO luminosity and halo mass relation, and we discuss two cases with median and low CO signals by comparing different relations. We add foregrounds generated from real observations, including thermal dust, spinning dust, free-free, synchrotron emission and CMB anisotropy. The beam with sidelobe effect is also considered. Our deep learning model is built upon ResUNet, which combines image generation algorithm UNet with the state-of-the-art architecture of deep learning, ResNet. The principal component analysis (PCA) method is employed to preprocess data before feeding it to the ResUNet. We find that, in the case of low instrumental noise, our UNet can efficiently reconstruct the CO signal map with correct line power spectrum by removing the foregrounds and recovering PCA signal loss and beam effects. Our method also can be applied to other intensity mappings like neutral hydrogen 21cm surveys.

  • Foreground Removal of CO Intensity Mapping Using Deep Learning

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Line intensity mapping (LIM) is a promising probe to study star formation, the large-scale structure of the Universe, and the epoch of reionization (EoR). Since carbon monoxide (CO) is the second most abundant molecule in the Universe except for molecular hydrogen ${\rm H}_2$, it is suitable as a tracer for LIM surveys. However, just like other LIM surveys, CO intensity mapping also suffers strong foreground contamination that needs to be eliminated for extracting valuable astrophysical and cosmological information. In this work, we take $^{12}$CO($\it J$=1-0) emission line as an example to investigate whether deep learning method can effectively recover the signal by removing the foregrounds. The CO(1-0) intensity maps are generated by N-body simulations considering CO luminosity and halo mass relation, and we discuss two cases with median and low CO signals by comparing different relations. We add foregrounds generated from real observations, including thermal dust, spinning dust, free-free, synchrotron emission and CMB anisotropy. The beam with sidelobe effect is also considered. Our deep learning model is built upon ResUNet, which combines image generation algorithm UNet with the state-of-the-art architecture of deep learning, ResNet. The principal component analysis (PCA) method is employed to preprocess data before feeding it to the ResUNet. We find that, in the case of low instrumental noise, our UNet can efficiently reconstruct the CO signal map with correct line power spectrum by removing the foregrounds and recovering PCA signal loss and beam effects. Our method also can be applied to other intensity mappings like neutral hydrogen 21cm surveys.

  • A new method of reconstructing Galactic three-dimensional structures using ultralong-wavelength radio observations

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The free-free absorption of low frequency radio waves by thermal electrons in the warm ionized medium of our Galaxy becomes very significant at $\lesssim 10$ MHz (ultralong-wavelength), and the absorption strength depends on the radio frequency. Upcoming space experiments such as the Discovering Sky at the Longest wavelength (DSL) and Farside Array for Radio Science Investigations of the Dark ages and Exoplanets (FARSIDE) will produce high-resolution multi-frequency sky maps at the ultralong-wavelength, providing a new window to observe the Universe. In this paper we propose that from these ultralong-wavelength multi-frequency maps, the three-dimensional distribution of the Galactic electrons can be reconstructed. This novel and robust reconstruction of the Galactic electron distribution will be a key science case of those space missions. Ultralong-wavelength observations will be a powerful tool for studying the astrophysics relevant to the Galactic electron distribution, for example, the impacts of supernova explosions on electron distribution, and the interaction between interstellar atoms and ionizing photons escaped from the HII regions around massive stars. An animation shows the reconstructed results using {\tt NE2001} model as input test. On ArXiv, it is given in the directory: Ancillary files. In the paper the animation is linked to Fig. 5.

  • Lunar Orbit Measurement of Cosmic Dawn 21 cm Global Spectrum

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: A redshifted 21 cm line absorption signature is commonly expected from the cosmic dawn era, when the first stars and galaxies formed. The detailed traits of this signal can provide important insight on the cosmic history. However, high precision measurement of this signal is hampered by the ionosphere refraction and absorption, as well as radio frequency interference (RFI). A space observation can solve the problem of the ionosphere, and the Moon can shield the RFI from the Earth. In this paper, we present simulations of the global spectrum measurement in the 30 -- 120 MHz frequency band on the lunar orbit, from the proposed Discovering the Sky at the Longest wavelength (DSL) project. In particular, we consider how the measured signal varies as the satellite moves along the orbit, take into account the blockage of different parts of the sky by the Moon and the antenna response. We estimate the sensitivity for such a 21 cm global spectrum experiment. An RMS noise level of $\le 0.05$ K is expected at 75 MHz after 10 orbits ($\sim$ 1 day) observation, for a frequency channel width of 0.4 MHz. We also study the influence of a frequency-dependent beam, which may generate complex spectral structures in the spectrum. Estimates of the uncertainties in the foreground and 21 cm model parameters are obtained.

  • Ultra-Low-Frequency Radio Astronomy Observations from a Selenocentric Orbit: first results of the Longjiang-2 experiment

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: This paper introduces the first results of observations with the Ultra-Long-Wavelength (ULW) -- Low Frequency Interferometer and Spectrometer (LFIS) on board the selenocentric satellite Longjiang-2. We present a brief description of the satellite and focus on the LFIS payload. The in-orbit commissioning confirmed a reliable operational status of the instrumentation. We also present results of a transition observation, which offers unique measurements on several novel aspects. We estimate the RFI suppression required for such a radio astronomy instrumentation at the Moon distances from Earth to be of the order of 80 dB. We analyse a method of separating Earth- and satellite-originated radio frequency interference (RFI). It is found that the RFI level at frequencies lower than a few MHz is smaller than the receiver noise floor.

  • The Tianlai Dish Pathfinder Array: design, operation and performance of a prototype transit radio interferometer

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The Tianlai Dish Pathfinder Array is a radio interferometer designed to test techniques for 21~cm intensity mapping in the post-reionization universe as a means for measuring large-scale cosmic structure. It performs drift scans of the sky at constant declination. We describe the design, calibration, noise level, and stability of this instrument based on the analysis of about $\sim 5 \%$ of 6,200 hours of on-sky observations through October, 2019. Beam pattern determinations using drones and the transit of bright sources are in good agreement, and compatible with electromagnetic simulations. Combining all the baselines, we make maps around bright sources and show that the array behaves as expected. A few hundred hours of observations at different declinations have been used to study the array geometry and pointing imperfections, as well as the instrument noise behaviour. We show that the system temperature is below 80~K for most feed antennas, and that noise fluctuations decrease as expected with integration time, at least up to a few hundred seconds. Analysis of long integrations, from 10 nights of observations of the North Celestial Pole, yielded visibilities with amplitudes of 20-30~mK, consistent with the expected signal from the NCP radio sky with $<10\,$mK precision for $1 ~\mathrm{MHz} \times 1~ \mathrm{min}$ binning. Hi-pass filtering the spectra to remove smooth spectrum signal yields a residual consistent with zero signal at the $0.5\,$mK level.

  • Self-calibrating interloper bias in spectroscopic galaxy clustering surveys

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Contamination of interloper galaxies due to misidentified emission lines can be a big issue in the spectroscopic galaxy clustering surveys, especially in future high-precision observations. We propose a statistical method based on the cross-correlations of the observational data itself between two redshift bins to efficiently reduce this effect, and it also can derive the interloper fraction f_i in a redshift bin with a high level of accuracy. The ratio of cross and auto angular correlation functions or power spectra between redshift bins are suggested to estimate f_i, and the key equations are derived for theoretical discussion. In order to explore and prove the feasibility and effectiveness of this method, we also run simulations, generate mock data, and perform cosmological constraints considering systematics based on the observation of the China Space Station Telescope (CSST). We find that this method can effectively reduce the interloper effect, and accurately constrain the cosmological parameters for f_i<1%~10%, which is suitable for most future surveys. This method also can be applied to other kinds of galaxy clustering surveys like line intensity mapping.

  • Imaging sensitivity of a linear interferometer array on lunar orbit

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Ground-based observation at frequencies below 30 MHz is hindered by the ionosphere of the Earth and radio frequency interference. To map the sky at these low frequencies, we have proposed the Discovering the Sky at the Longest wavelength mission (DSL, also known as the "Hongmeng" mission, which means "Primordial Universe" in Chinese) concept, which employs a linear array of micro-satellites orbiting the Moon. Such an array can be deployed to the lunar orbit by a single rocket launch, and it can make interferometric observations achieving good angular resolutions despite the small size of the antennas. However, it differs from the conventional ground-based interferometer array or even the previous orbital interferometers in many aspects, new data-processing methods need to be developed. In this work, we make a series of simulations to assess the imaging quality and sensitivity of such an array. We start with an input sky model and a simple orbit model, generate mock interferometric visibilities, and then reconstruct the sky map. We consider various observational effects and practical issues, such as the system noise, antenna response, and Moon blockage. Based on the quality of the recovered image, we quantify the imaging capability of the array for different satellite numbers and array configurations. For the first time, we make practical estimates of the point source sensitivity for such a lunar orbit array, and predict the expected number of detectable sources for the mission. Depending on the radio source number distribution which is still very uncertain at these frequencies, the proposed mission can detect $10^2 \sim 10^4$ sources during its operation.

  • An Ultra-long Wavelength Sky Model with Absorption Effect

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The radio sky at frequencies below $\sim10$ MHz is still largely unknown, this remains the last unexplored part of the electromagnetic spectrum in astronomy. The upcoming space experiments aiming at such low frequencies (ultra-long wavelength or ultra-low frequency) would benefit from reasonable expectations of the sky brightness distribution at relevant frequencies. In this work, we develop a radio sky model that is valid down to $\sim1$ MHz. In addition to the discrete HII objects, we take into account the free-free absorption by thermal electrons in the Milky Way's warm ionized medium (WIM). This absorption effect becomes obvious at $\lesssim10$ MHz, and could make the global radio spectrum turn over at $\sim3$ MHz. Our sky map shows unique features at the ultra-long wavelengths, including a darker Galactic plane in contrast to the sky at higher frequencies, and the huge shadows of the spiral arms on the sky map. It would be a useful guidance for designing the future ultra-long wavelength observations. Our Ultralong-wavelength Sky Model with Absorption (ULSA) model could be downloaded at https://doi.org/10.5281/zenodo.4454153.

  • Cross-Correlation Forecast of CSST Spectroscopic Galaxy and MeerKAT Neutral Hydrogen Intensity Mapping Surveys

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Cross-correlating the data of neutral hydrogen (HI) 21cm intensity mapping with galaxy surveys is an effective method to extract astrophysical and cosmological information. In this work, we investigate the cross-correlation of MeerKAT single-dish mode HI intensity mapping and China Space Station Telescope (CSST) spectroscopic galaxy surveys. We simulate a survey area of $\sim 300$ $\mathrm{deg}^2$ of MeerKAT and CSST surveys at $z=0.5$ using Multi-Dark N-body simulation. The PCA algorithm is applied to remove the foregrounds of HI intensity mapping, and signal compensation is considered to solve the signal loss problem in the HI-galaxy cross power spectrum caused by the foreground removal process. We find that from CSST galaxy auto and MeerKAT-CSST cross power spectra, the constraint accuracy of the parameter product $\Omega_{\rm HI}b_{\rm HI}r_{{\rm HI},g}$ can reach to $\sim1\%$, which is about one order of magnitude higher than the current results. After performing the full MeerKAT HI intensity mapping survey with 5000 deg$^2$ survey area, the accuracy can be enhanced to $<0.3\%$. This implies that the MeerKAT-CSST cross-correlation can be a powerful tool to probe the cosmic HI property and the evolution of galaxies and the Universe.

  • Photometric redshift estimates using Bayesian neural networks in the CSST survey

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Galaxy photometric redshift (photo-$z$) is crucial in cosmological studies, such as weak gravitational lensing and galaxy angular clustering measurements. In this work, we try to extract photo-$z$ information and construct its probability distribution function (PDF) using the Bayesian neural networks (BNN) from both galaxy flux and image data expected to be obtained by the China Space Station Telescope (CSST). The mock galaxy images are generated from the Advanced Camera for Surveys of Hubble Space Telescope ($HST$-ACS) and COSMOS catalog, in which the CSST instrumental effects are carefully considered. And the galaxy flux data are measured from galaxy images using aperture photometry. We construct Bayesian multilayer perceptron (B-MLP) and Bayesian convolutional neural network (B-CNN) to predict photo-$z$ along with the PDFs from fluxes and images, respectively. We combine the B-MLP and B-CNN together, and construct a hybrid network and employ the transfer learning techniques to investigate the improvement of including both flux and image data. For galaxy samples with SNR$>$10 in $g$ or $i$ band, we find the accuracy and outlier fraction of photo-$z$ can achieve $\sigma_{\rm NMAD}=0.022$ and $\eta=2.35\%$ for the B-MLP using flux data only, and $\sigma_{\rm NMAD}=0.022$ and $\eta=1.32\%$ for the B-CNN using image data only. The Bayesian hybrid network can achieve $\sigma_{\rm NMAD}=0.021$ and $\eta=1.23\%$, and utilizing transfer learning technique can improve results to $\sigma_{\rm NMAD}=0.019$ and $\eta=1.17\%$, which can provide the most confident predictions with the lowest average uncertainty.

  • A Fast Transient Backend to Detect FRBs with the Tianlai Dish Pathfinder Array

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The Tianlai Dish Pathfinder array is a radio interferometer array consisting of 16 six meter dish antennas. The original digital backend integration time is at the seconds level, designed for HI intensity mapping experiment. A new digital backend with millisecond response is added to enable it to search for fast radio burst (FRB) during its observations. The design and calibration of this backend, and the real time search pipeline for it are described in this paper. It is capable of forming 16 digital beams for each linear polarisation, covering an area of 19.6 square degrees. The search pipeline is capable of searching for, recording and classifying FRBs automatically in real time. In commissioning, we succeeded in capturing the signal pulses from the pulsars PSR B0329+54 and B2021+51.

  • Forecast of Neutrino Cosmology from the CSST Photometric Galaxy Clustering and Cosmic Shear Surveys

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: China Space Station Telescope (CSST) is a forthcoming powerful Stage IV space-based optical survey equipment. It is expected to explore a number of important cosmological problems in extremely high precision. In this work, we focus on investigating the constraints on neutrino mass and other cosmological parameters under the model of cold dark matter with a constant equation of state of dark energy ($w$CDM), using the mock data from the CSST photometric galaxy clustering and cosmic shear surveys (i.e. 3$\times$2pt). The systematics from galaxy bias, photometric redshift uncertainties, intrinsic alignment, shear calibration, baryonic feedback, non-linear, and instrumental effects are also included in the analysis. We generate the mock data based on the COSMOS catalog considering the instrumental and observational effects of the CSST, and make use of the Markov Chain Monte Carlo (MCMC) method to perform the constraints. Comparing to the results from current similar measurements, we find that CSST 3$\times$2pt surveys can improve the constraints on the cosmological parameters by one order of magnitude at least. We can obtain an upper limit for the sum of neutrino mass $\Sigma m_{\nu} \lesssim 0.36$ (0.56) eV at 68\% (95\%) confidence level, and $\Sigma m_{\nu} \lesssim 0.23$ (0.29) eV at 68\% (95\%) confidence level if ignore the baryonic effect, which is comparable to the {\it Planck} results and much better than the current photometric surveys. This indicates that the CSST photometric surveys can provide stringent constraints on the neutrino mass and other cosmological parameters, and the results also can be further improved by including data from other kinds of CSST cosmological surveys.

  • A Fast Transient Backend to Detect FRBs with the Tianlai Dish Pathfinder Array

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The Tianlai Dish Pathfinder array is a radio interferometer array consisting of 16 six meter dish antennas. The original digital backend integration time is at the seconds level, designed for HI intensity mapping experiment. A new digital backend with millisecond response is added to enable it to search for fast radio burst (FRB) during its observations. The design and calibration of this backend, and the real time search pipeline for it are described in this paper. It is capable of forming 16 digital beams for each linear polarisation, covering an area of 19.6 square degrees. The search pipeline is capable of searching for, recording and classifying FRBs automatically in real time. In commissioning, we succeeded in capturing the signal pulses from the pulsars PSR B0329+54 and B2021+51.

  • On Measuring the 21 cm Global Spectrum of the Cosmic Dawn with an Interferometer Array

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We theoretically investigate the recovery of global spectrum (monopole) from visibilities (cross-correlation only) measured by the interferometer array and the feasibility of extracting 21 cm signal of cosmic dawn. In our approach, the global spectrum is obtained by solving the monopole and higher-order components simultaneously from the visibilities measured with up to thousands of baselines. Using this algorithm, the monopole of both foreground and the 21 cm signal can be correctly recovered in a broad range of conditions. We find that a 3D baseline distribution can have much better performance than a 2D (planar) baseline distribution, particularly when there is a lack of shorter baselines. We simulate for ground-based 2D and 3D array configurations, and a cross-shaped space array located at the Sun-Earth L2 point that can form 3D baselines through orbital precession. In all simulations we obtain good recovered global spectrum, and successfully extract the 21 cm signal from it, with reasonable number of antennas and observation time.

  • A new method of reconstructing Galactic three-dimensional structures using ultralong-wavelength radio observations

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The free-free absorption of low frequency radio waves by thermal electrons in the warm ionized medium of our Galaxy becomes very significant at $\lesssim 10$ MHz (ultralong-wavelength), and the absorption strength depends on the radio frequency. Upcoming space experiments such as the Discovering Sky at the Longest wavelength (DSL) and Farside Array for Radio Science Investigations of the Dark ages and Exoplanets (FARSIDE) will produce high-resolution multi-frequency sky maps at the ultralong-wavelength, providing a new window to observe the Universe. In this paper we propose that from these ultralong-wavelength multi-frequency maps, the three-dimensional distribution of the Galactic electrons can be reconstructed. This novel and robust reconstruction of the Galactic electron distribution will be a key science case of those space missions. Ultralong-wavelength observations will be a powerful tool for studying the astrophysics relevant to the Galactic electron distribution, for example, the impacts of supernova explosions on electron distribution, and the interaction between interstellar atoms and ionizing photons escaped from the HII regions around massive stars. An animation shows the reconstructed results using {\tt NE2001} model as input test. On ArXiv, it is given in the directory: Ancillary files. In the paper the animation is linked to Fig. 5.

  • A Semi-blind PCA-based Foreground Subtraction Method for 21 cm Intensity Mapping

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The Principal Component Analysis (PCA) method and the Singular Value Decomposition (SVD) method are widely used for foreground subtraction in 21 cm intensity mapping experiments. We show their equivalence, and point out that the condition for completely clean separation of foregrounds and cosmic 21 cm signal using the PCA/SVD is unrealistic. We propose a PCA-based foreground subtraction method, dubbed "Singular Vector Projection (SVP)" method, which exploits a priori information of the left and/or right singular vectors of the foregrounds. We demonstrate with simulation tests that this new, semi-blind method can reduce the error of the recovered 21 cm signal by orders of magnitude, even if only the left and/or right singular vectors in the largest few modes are exploited. The SVP estimators provide a new, effective approach for 21 cm observations to remove foregrounds and uncover the physics in the cosmic 21 cm signal.

  • Extracting Photometric Redshift from Galaxy Flux and Image Data using Neural Networks in the CSST Survey

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The accuracy of galaxy photometric redshift (photo-$z$) can significantly affect the analysis of weak gravitational lensing measurements, especially for future high-precision surveys. In this work, we try to extract photo-$z$ information from both galaxy flux and image data expected to be obtained by China Space Station Telescope (CSST) using neural networks. We generate mock galaxy images based on the observational images from the Advanced Camera for Surveys of Hubble Space Telescope (HST-ACS) and COSMOS catalogs, considering the CSST instrumental effects. Galaxy flux data are then measured directly from these images by aperture photometry. The Multi-Layer Perceptron (MLP) and Convolutional Neural Network (CNN) are constructed to predict photo-$z$ from fluxes and images, respectively. We also propose to use an efficient hybrid network, which combines MLP and CNN, by employing transfer learning techniques to investigate the improvement of the result with both flux and image data included. We find that the photo-$z$ accuracy and outlier fraction can achieve $\sigma_{\rm NMAD} = 0.023$ and $\eta = 1.43\%$ for the MLP using flux data only, and $\sigma_{\rm NMAD} = 0.025$ and $\eta = 1.21\%$ for the CNN using image data only. The result can be further improved in high efficiency as $\sigma_{\rm NMAD} = 0.020$ and $\eta = 0.90\%$ for the hybrid transfer network. These approaches result in similar galaxy median and mean redshifts ~0.8 and 0.9, respectively, for the redshift range from 0 to 4. This indicates that our networks can effectively and properly extract photo-$z$ information from the CSST galaxy flux and image data.

  • Anisotropies of Cosmic Optical and Near-IR Background from China Space Station Telescope (CSST)

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Anisotropies of the cosmic optical background (COB) and cosmic near-IR background (CNIRB) are capable of addressing some of the key questions in cosmology and astrophysics. In this work, we measure and analyze the angular power spectra of the simulated COB and CNIRB in the ultra-deep field of the China Space Station Telescope (CSST-UDF). The CSST-UDF covers about 9 square degrees, with magnitude limits ~28.3, 28.2, 27.6, 26.7 AB mag for point sources with 5-sigma detection in the r (0.620 um), i (0.760 um), z (0.915 um), and y (0.965 um) bands, respectively. According to the design parameters and scanning pattern of the CSST, we generate mock data, merge images and mask the bright sources in the four bands. We obtain four angular power spectra from l=200 to 2,000,000 (from arcsecond to degree), and fit them with a multi-component model including intrahalo light (IHL) using the Markov chain Monte Carlo (MCMC) method. We find that the signal-to-noise ratio (SNR) of the IHL is larger than 8 over the range of angular scales that are useful for astrophysical studies (l~10,000-400,000). Comparing to previous works, the constraints on the model parameters are improved by factors of 3~4 in this study, which indicates that the CSST-UDF survey can be a powerful probe on the cosmic optical and near-IR backgrounds.